Ускорение заряженных частиц реферат

При сравнительно низких энергиях ускоренные частицы используют, например, для получения изображения на экране телевизора или электронного микроскопа, генерации рентгеновских лучей электронно-лучевые трубки , разрушения раковых клеток, уничтожения бактерий. При ускорении заряженных частиц до энергий, превышающих 1 мегаэлектронвольт МэВ их используют для изучения структуры микрообъектов например, атомных ядер и природы фундаментальных сил. В этом случае ускорители заряженных частиц выполняют роль источников пробных частиц, зондирующих изучаемый объект.

Его получают следующим образом. Пучок ускоренных протонов направляется на твердую, обычно бериллиевую мишень, расположенную внутри вакуумной камеры. Только небольшую часть из них удается с помощью электрических и магнитных полей сформировать в пучок. Поэтому для получения пучков вторичных частиц желательно иметь максимальную интенсивность ускоряемого основного пучка. Дальнейший этап — разделение мезонов и антипротонов по массе с помощью большого масс-спектрометра. В масс-спектрометре частицы разной массы движутся под действием магнитного поля по разным дорожкам и затем выводятся в отдельные пучки.

Ускорители заряженных частиц

Помощь в написании работы, которую точно примут! В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине радиационная терапия , а также в промышленности например, для ионной имплантации в полупроводниках. Крупные же ускорители применяются главным образом в научных целях — для исследования субъядерных процессов и свойств элементарных частиц. Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны.

Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее.

Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки.

В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов. Энергия ядерных частиц измеряется в электронвольтах эВ. Электронвольт — это энергия, которую приобретает заряженная частица, несущая один элементарный заряд заряд электрона , при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В.

Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов электронвольт — на крупнейшем в мире ускорителе.

Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения.

Передний край современной техники ускорителей определяется двумя основными параметрами — энергией и интенсивностью пучка частиц. В любой момент времени напряженность поля изменяется синусоидально в зависимости от положения в пространстве, то есть распределение поля в пространстве имеет форму волны. А в любой точке пространства она изменяется синусоидально во времени. Поэтому максимумы поля перемещаются в пространстве с так называемой фазовой скоростью. Следовательно, частицы могут двигаться так, чтобы локальное поле все время их ускоряло.

В линейных ускорительных системах высокочастотные поля были впервые применены в , когда норвежский инженер Р. Видероэ осуществил ускорение ионов в короткой системе связанных высокочастотных резонаторов. Если резонаторы рассчитаны так, что фазовая скорость поля всегда равна скорости частиц, то в процессе своего движения в ускорителе пучок непрерывно ускоряется.

Движение частиц в таком случае подобно скольжению серфера на гребне волны. При этом скорости протонов или ионов в процессе ускорения могут сильно увеличиваться. Соответственно этому должна увеличиваться и фазовая скорость волны vфаз. Другой подход, позволяющий исключить влияние замедляющей фазы высокочастотного электрического поля, основан на использовании металлической конструкции, экранирующей пучок от поля в этот полупериод.

Впервые такой способ был применен Э. Лоуренсом в циклотроне; он используется также в линейном ускорителе Альвареса. Последний представляет собой длинную вакуумную трубу, в которой расположен целый ряд металлических дрейфовых трубок. Каждая трубка последовательно соединена с высокочастотным генератором через длинную линию, вдоль которой со скоростью, близкой к скорости света, бежит волна ускоряющего напряжения.

Таким образом, все трубки по очереди оказываются под высоким напряжением. Заряженная частица, вылетающая из инжектора в подходящий момент времени, ускоряется в направлении первой трубки, приобретая определенную энергию. Внутри этой трубки частица дрейфует — движется с постоянной скоростью. Если длина трубки правильно подобрана, то она выйдет из нее в тот момент, когда ускоряющее напряжение продвинулось на одну длину волны. При этом напряжение на второй трубке тоже будет ускоряющим и составляет сотни тысяч вольт.

Такой процесс многократно повторяется, и на каждом этапе частица получает дополнительную энергию. Чтобы движение частиц было синхронно с изменением поля, соответственно увеличению их скорости должна увеличиваться длина трубок.

В конце концов скорость частицы достигнет скорости, очень близкой к скорости света, и предельная длина трубок будет постоянной. Пространственные изменения поля налагают ограничение на временную структуру пучка.

Ускоряющее поле изменяется в пределах сгустка частиц любой конечной протяженности. Следовательно, протяженность сгустка частиц должна быть мала по сравнению с длиной волны ускоряющего высокочастотного поля. Иначе частицы будут по-разному ускоряться в пределах сгустка. Слишком большой разброс энергии в пучке не только увеличивает трудности фокусировки пучка из-за наличия хроматической аберрации у магнитных линз, но и ограничивает возможности применения пучка в конкретных задачах.

Разброс энергий может также приводить к размытию сгустка частиц пучка в аксиальном направлении. Рассмотрим сгусток нерелятивистских ионов, движущихся с начальной скоростью v0. Продольные электрические силы, обусловленные пространственным зарядом, ускоряют головную часть пучка и замедляют хвостовую. Синхронизируя соответствующим образом движение сгустка с высокочастотным полем, можно добиться большего ускорения хвостовой части сгустка, чем головной.

Таким согласованием фаз ускоряющего напряжения и пучка можно осуществить фазировку пучка — скомпенсировать дефазирующее влияние пространственного заряда и разброса по энергии. В результате в некотором интервале значений центральной фазы сгустка наблюдаются центрирование и осцилляции частиц относительно определенной фазы устойчивого движения.

Это явление, называемое автофазировкой, чрезвычайно важно для линейных ускорителей ионов и современных циклических ускорителей электронов и ионов. К сожалению, автофазировка достигается ценой снижения коэффициента заполнения ускорителя до значений, намного меньших единицы. В процессе ускорения практически у всех пучков обнаруживается тенденция к увеличению радиуса по двум причинам: из-за взаимного электростатического отталкивания частиц и из-за разброса поперечных тепловых скоростей.

Первая тенденция ослабевает с увеличением скорости пучка, поскольку магнитное поле, создаваемое током пучка, сжимает пучок и в случае релятивистских пучков почти компенсирует дефокусирующее влияние пространственного заряда в радиальном направлении. Поэтому данный эффект весьма важен в случае ускорителей ионов, но почти несуществен для электронных ускорителей, в которых пучок инжектируется с релятивистскими скоростями. Второй эффект, связанный с эмиттансом пучка, важен для всех ускорителей.

Удержать частицы вблизи оси можно с помощью квадрупольных магнитов. Правда, одиночный квадрупольный магнит, фокусируя частицы в одной из плоскостей, в другой их дефокусирует. Курантом, С. Ливингстоном и Х. Снайдером: система двух квадрупольных магнитов, разделенных пролетным промежутком, с чередованием плоскостей фокусировки и дефокусировки в конечном счете обеспечивает фокусировку во всех плоскостях.

Дрейфовые трубки все еще используются в протонных линейных ускорителях, где энергия пучка увеличивается от нескольких мегаэлектронвольт примерно до МэВ. В первых электронных линейных ускорителях типа ускорителя на 1 ГэВ, сооруженного в Стэнфордском университете США , тоже использовались дрейфовые трубки постоянной длины, поскольку пучок инжектировался при энергии порядка 1 МэВ.

В этом ускорителе высокочастотная мощность на частоте около 3 ГГц генерируется большими электровакуумными приборами — клистронами. Протонный линейный ускоритель на самую высокую энергию был построен в Лосаламосской национальной лаборатории в шт. Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы.

Существует весьма элегантный и экономичный способ ускорения пучка путем многократного сообщения ему небольших порций энергии. Для этого с помощью сильного магнитного поля пучок заставляют двигаться по круговой орбите и много раз проходить один и тот же ускоряющей промежуток. Впервые этот способ был реализован в Э.

Лоуренсом и С. Ливингстоном в изобретенном ими циклотроне. Как и в линейном ускорителе с дрейфовыми трубками, пучок экранируется от действия электрического поля в тот полупериод, когда оно действует замедляюще.

Поскольку ускорение приводит к увеличению скорости v, возрастает и радиус R. Таким образом, протоны и тяжелые ионы движутся по раскручивающейся спирали все возрастающего радиуса. При каждом обороте по орбите пучок проходит через зазор между дуантами — высоковольтными полыми D-образными электродами, где на него действует высокочастотное электрическое поле. Лоуренс сообразил, что время между прохождениями пучка через зазор в случае нерелятивистских частиц остается постоянным, поскольку возрастание их скорости компенсируется увеличением радиуса.

На протяжении той части периода обращения, когда высокочастотное поле имеет неподходящую фазу, пучок находится вне зазора. Частота обращения дается выражением Для ускорения ионов до высоких энергий необходимо лишь, чтобы магнитное поле и частота высоковольтного напряжения отвечали условию резонанса; тогда частицы будут дважды за оборот проходить через зазор между дуантами в нужный момент времени. Для ускорения пучка до энергии 50 МэВ при ускоряющем напряжении 10 кэВ потребуется оборотов.

Рабочая частота протонного циклотрона может составлять 20 МГц, так что время ускорения — порядка 1 мс. Как и в линейных ускорителях, частицы в процессе ускорения в циклотроне должны фокусироваться в поперечном направлении, иначе все они, кроме инжектированных со скоростями, параллельными полюсным наконечникам магнита, выпадут из цикла ускорения. В циклотроне возможность ускорения частиц с конечным разбросом по углам обеспечивается приданием магнитному полю особой конфигурации, при которой на частицы, выходящие из плоскости орбиты, действуют силы, возвращающие их в эту плоскость.

К сожалению, по требованиям стабильности сгустка ускоряемых частиц фокусирующая компонента магнитного поля должна уменьшаться с увеличением радиуса. А это противоречит условию резонанса и приводит к эффектам, ограничивающим интенсивность пучка. Другой существенный фактор, снижающий возможности простого циклотрона, — релятивистский рост массы, как необходимое следствие увеличения энергии частиц: В случае ускорения протонов синхронизм будет нарушаться из-за релятивистского прироста массы примерно при 10 МэВ.

Один из способов поддержания синхронизма — модулировать частоту ускоряющего напряжения так, чтобы она уменьшалась по мере увеличения радиуса орбиты и увеличения скорости частиц.

Частота должна изменяться по закону Такой синхроциклотрон может ускорять протоны до энергии в несколько сот мегаэлектровольт. Например, если напряженность магнитного поля равна 2 Тл, то частота должна уменьшаться примерно от 32 МГц в момент инжекции до 19 МГц и менее при достижении частицами энергии МэВ. Такое изменение частоты ускоряющего напряжения должно происходить на протяжении нескольких миллисекунд.

После того как частицы достигают высшей энергии и выводятся из ускорителя, частота возвращается к своему исходному значению и в ускоритель вводится новый сгусток частиц. Но даже при оптимальной конструкции магнита и наилучших характеристиках системы подвода высокочастотной мощности возможности циклотронов ограничиваются практическими соображениями: для удержания на орбите ускоряемых частиц с высокой энергией нужны чрезвычайно большие магниты.

Стоимость же сооружения сихроциклотрона примерно порпорциональна кубу радиуса магнита. Поэтому для достижения более высоких энергий при практически приемлемых затратах требуются новые принципы ускорения.

Протонный синхротрон. Высокая стоимость циклических ускорителей связана с большим радиусом магнита.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Ускорители частиц — Дмитрий Казаков

В настоящее время широкое применение в науке и технике нашли ускорители заряженных частиц – установки для получения пучков заряженных. Ускоритель заряженных частиц следует отличать от плазменных ускорителей, в которых происходит ускорение в среднем электрически нейтральных.

Ускорители заряженных частиц, как устройства для получения заряженных частиц больших энергий. Ускорение с помощью электрического поля способного изменять энергию частиц. Принципы работы ускорителей и коллайдеров. Большой Адронный Коллайдер. История развития ускорителей. Разработка ускорителей современного типа. Принцип знакопеременной фокусировки частиц. Предел достижимых энергий в циклических и линейных ускорителях частиц. Обмотки возбуждения магнита. История их создания и принцип работы. Создание разности потенциалов в десятки мегавольт. Описание системы "руления" пучком. Характеристика поворотных магнитов. Основные отличия и преимущества коллайдера. Способы повышения производительности молекулярно-динамического моделирования при помощи различных вычислительных методов и графических ускорителей. Моделирование системы заряженных частиц в виде кластерной наноплазмы. Изучение действия высоковольтных, циклических и линейных ускорителей ядерных частиц. Описание источников квантов высоких энергий, нейтронов и других нейтральных частиц. Методы регистрации ядерных частиц. Схема линейного индукционного ускорителя.

Помощь в написании работы, которую точно примут! В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света.

В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине радиационная терапия , а также в промышленности например, для ионной имплантации в полупроводниках. Крупные же ускорители применяются главным образом в научных целях — для исследования субъядерных процессов и свойств элементарных частиц.

Табл. 1. — Классификация ускорителей заряженных частиц

При сооружении циклич. Ускорение заряженных частиц реферат магниты используются в циклотронах для создания пост. Так работает самый большой из действующих протонных синхротронов-теватрон США. До х гг. Сейчас многие интересные результаты получают на электрон-позитронных и протон-антипротонных кольцевых ускорителях со встречными пучками к о л л а й д е р а х.

Ускоритель заряженных частиц

Основная статья: Высоковольтный ускоритель Идеологически наиболее простой линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды. Ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Высоковольтные ускорители можно разделить на четыре группы по типу генераторов, создающих высокое напряжение: Ускоритель Ван де Граафа. Ускоряющее напряжение создаётся генератором Ван де Граафа , основанном на механическом переносе зарядов диэлектрической лентой. В современных модификациях пеллетронах лента заменена цепью. Каскадный ускоритель. Трансформаторный ускоритель.

Протоны, электро-i ны III. Принцип действия резонансных ускорителей В резонансном ускорителе непрерывное ускорение происходит благодаря тому, что в ускоряющие электроды частица всё время попадает в ускоряющую фазу поля т.

Во время землетрясений происходит сжатие земной коры и локальное изменение силы тяжести. Однако из-за отсутствия точных приборов ученым удавалось обнаруживать эти колебания только в результате длительных наблюдений до и после землетрясений.

Ускорение заряженных частиц реферат

.

Реферат: Ускорители элементарных частиц

.

Ускорители заряженных частиц

.

ускорители заряженных частиц

.

.

.

Похожие публикации